PENGARUH PENAMBahan MATERIAL BUTIRAN BIOMASSA TERHADAP LAJU Sirkulasi Padat PADA SISTEM COLD MODEL DUAL REACTOR FLUIDIZED BED

Oleh : I Kadek Mudita
Pembimbing : Prof. I Nyoman Suprapta Winaya,ST,MASc,Ph.D
I Putu Lokantara, ST, MT

ABSTRAK

Teknologi fluidisasi dual reactor fluidized bed (DRFB) merupakan teknologi dual reactor yang terdiri dari reaktor gasifikasi dan reaktor pembakaran. Namun pada penelitian kali ini DRFB dibuat dari akrilik yang bertujuan untuk mengamati fenomena laju sirkulasi padat, proses percampuran dan perpindahan massa yang terjadi pada sebuah sistem tertutup. Pada penelitian ini material hamparan yang digunakan adalah pasir silika dan untuk biomassanya menggunakan partikel serbuk pellet ikan.

Dual reactor fluidized bed yang digunakan dalam penelitian ini berdiameter, 10 cm untuk reaktor gasifikasi (reaktor 1) dan 5 cm untuk reaktor pembakaran (reaktor 2). Variasi I (material hamparan : partikel biomassa serbuk pellet ikan = 400 gr : 200 gr), Variasi II (material hamparan : partikel biomassa serbuk pellet ikan = 400 gr : 400 gr), dan Variasi III (material hamparan : material hamparan : partikel biomassa serbuk pellet ikan = 400 gr : 600 gr).

Hasil penelitian menunjukkan bahwa laju sirkulasi partikel yang terbaik adalah pada variasi I dengan perbandingan campuran material (material hamparan : biomass partikel serbuk pellet ikan = 400 gr : 200 gr). Hasil laju sirkulasi partikel padat dari variasi I (400 gr : 200 gr) yang diperoleh pada riser 18,5657 kg/(m².s) dan pada downer 13,1021 kg/(m².s).

Kata kunci : Fluidisasi, Dual Reaktor Fluidized Bed, Laju Sirkulasi Padat
ADDITIONAL MATERIAL EFFECT ON BIOMASS GRAINS
CIRCULATION RATE OF SOLID SYSTEM COLD MODEL DUAL REACTOR FLUIDIZED BED

Author : I Kadek Mudita
Guidance : Prof. I Nyoman Suprapta Winaya, ST,MASc, Ph.D
I Putu Lokantara, ST, MT

ABSTRACT

Fluidization technology dual reactor fluidized bed (DRFB) is a technology dual reactor which consists of a gasification reactor and the reactor combustion. However, In this research DRFB made of acrylic which aims to observe the phenomenon of solid circulation rate, the process of mixing and mass transfer in closed systems. In this research the bed material used is silica sand and fish pellet powder particles.

Dual reactor fluidized bed used in this research diameter, 10 cm for the gasification reactor (reactor 1) and 5 cm for the combustion reactor (reactor 2). Variations I (material bed: particle biomass powder pellet fish = 400 g: 200 g), variations II (material bed: particle biomass powder pellet fish = 400 g: 400 g), and variations III (material bed: material overlay: particle biomass powder pellet fish = 400 g: 600 g).

The results showed that the particle circulation rate is best in variations I in the ratio mix of material (material bed : fish biomass pellet powder particles = 400 g : 200 g). Results circulation rate of solid particles of variation I (400 g: 200 g) obtained in the riser 18.5657 kg / (m².s) and on a downer 13.1021 kg / (m².s).

Keywords : Fluidized, Dual reactor fluidized bed , The rate of Solid Circulation
DAFTAR ISI

<table>
<thead>
<tr>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEMBAR PENGESEAHAN</td>
</tr>
<tr>
<td>LEMBAR PERSETUJUAN</td>
</tr>
<tr>
<td>KATA PENGANTAR</td>
</tr>
<tr>
<td>ABSTRAK</td>
</tr>
<tr>
<td>ABSTRACT</td>
</tr>
<tr>
<td>DAFTAR ISI</td>
</tr>
<tr>
<td>DAFTAR GAMBAR</td>
</tr>
<tr>
<td>DAFTAR TABEL</td>
</tr>
<tr>
<td>BAB I PENDAHULUAN</td>
</tr>
<tr>
<td>1.1. Latar Belakang</td>
</tr>
<tr>
<td>1.2. Rumusan Masalah</td>
</tr>
<tr>
<td>1.3. Batasan Masalah</td>
</tr>
<tr>
<td>1.4. Tujuan Penelitian</td>
</tr>
<tr>
<td>1.5. Manfaat Penelitian</td>
</tr>
<tr>
<td>BAB II LANDASAN TEORI</td>
</tr>
<tr>
<td>2.1. Pirolisis, Pembakaran dan Gasifikasi</td>
</tr>
<tr>
<td>2.2. Teknologi Gasifikasi</td>
</tr>
<tr>
<td>2.2.1. Jenis-Jenis Reaktor Gasifikasi (Gasifier)</td>
</tr>
<tr>
<td>2.2.2. Tahapan Proses Gasifikasi</td>
</tr>
<tr>
<td>2.3. Mixing dan Solid Circulation</td>
</tr>
<tr>
<td>2.4. Biomassa</td>
</tr>
<tr>
<td>2.4.1. Pengertian Biomassa</td>
</tr>
<tr>
<td>2.4.2. Kandungan dalam Biomassa</td>
</tr>
<tr>
<td>2.5. Pasir Silika</td>
</tr>
<tr>
<td>2.6. Fluidisasi</td>
</tr>
<tr>
<td>2.6.1. Pengertian Fluidisasi</td>
</tr>
<tr>
<td>2.6.2. Klasifikasi Pasir Geldart</td>
</tr>
</tbody>
</table>
BAB III METODE PENELITIAN ... 23
3.1. Lokasi Penelitian dan Lokasi Pembuatan Alat .. 23
 3.1.1. Lokasi Penelitian .. 23
 3.1.1. Lokasi Pembuatan Alat ... 23
3.2. Variabel Penelitian .. 23
3.3. Alat dan Bahan Penelitian .. 24
 3.3.1. Alat Penelitian ... 24
 3.3.2. Bahan Penelitian ... 30
3.4. Preparasi Pellet Ikan dan Pasir Silika .. 31
3.5. Rancangan Penelitian ... 31
3.5. Prosedur Penelitian .. 32
3.6. Tahapan Persiapan .. 33
3.7. Langkah-langkah Penelitian ... 34

BAB IV HASIL DAN PEMBAHASAN .. 36
4.1. Perhitungan Densitas Pellet Ikan dan Pasir Silika .. 36
4.2. Densitas Campuran Padatan ... 39
4.3. Pengukuran Kecepatan pada Venturimeter dengan Manometer 41
4.4. Distribusi Tekanan Sepanjang Reaktor 2 ... 42
4.5. Laju Sirkulasi Padat ... 44

BAB V PENUTUP .. 50
 5.1 Kesimpulan ... 50
 5.2 Saran ... 50

DAFTAR PUSTAKA ... 51

LAMPIRAN ... 53
DAFTAR GAMBAR

Gambar 2.1 Perbedaan pirolisis, pembakaran dan gasifikasi ... 6
Gambar 2.2 : (a) Updraft Gasifier, (b) Downdraft Gasifier,
(c) Crossdraft Gasifier ... 8
Gambar 2.3 Fluidized Bed Gasifier .. 9
Gambar 2.4 Entrained-Flow Bed Gasifier .. 10
Gambar 2.5 Tahapan-tahapan proses gasifikasi ... 11
Gambar 2.6 Definisi Energi Biomassa ... 14
Gambar 2.7 Perbandingan sistem biomassa dan fosil pada siklus karbon 14
Gambar 2.8 Pasir Silika ... 17
Gambar 2.9 Diagram klasifikasi jenis-jenis pasir ... 18
Gambar 2.10 Venturimeter dengan manometer .. 20
Gambar 3.1 Rektor .. 25
Gambar 3.2 Detail ukuran rektor .. 25
Gambar 3.3 Bahan plat distributor ... 26
Gambar 3.4 L-Valve .. 26
Gambar 3.5 Fuel Feeder ... 27
Gambar 3.6 Kompresor .. 27
Gambar 3.7 Blower .. 27
Gambar 3.8 pressure gauge digital .. 28
Gambar 3.9 Flowmeter .. 28
Gambar 3.10 Timbangan ... 28
Gambar 3.11 Ayakan/screen mesh ukuran 0,4 – 0,5 mm ... 29
Gambar 3.12 Venturimeter dengan manometer .. 29
Gambar 3.13 Waterpas ... 29
Gambar 3.14 Piknometer ... 30
Gambar 3.15 Pelet Ikan .. 30
Gambar 3.16 Pasir silika .. 30
Gambar 3.17 Skematik dual reactor fluidized bed (DRFB) ... 32
Gambar 3.18 Foto alat uji DRFB berbahan pipa PVC dan akrilik .. 33
Gambar 3.19 Diagram Alir Penelitian ... 35
Gambar 4.1 Grafik hubungan komposisi campuran dengan densitas
campuran padatan .. 41
Gambar 4.2 Reaktor 1 dan reaktor 2 .. 43
Gambar 4.3 Grafik hubungan Pressure drop pada reaktor ... 44
Gambar 4.4 Grafik hubungan komposisi campuran terhadap massa padat
yang melewati downer dan riser ... 45
Gambar 4.5 Grafik hubungan komposisi campuran terhadap laju sirkulasi padat 48
DAFTAR TABEL

<table>
<thead>
<tr>
<th>Tabel</th>
<th>Judul</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Analisa Ultimat Biomassa</td>
<td>15</td>
</tr>
<tr>
<td>4.1</td>
<td>Data pengujian densitas pellet ikan</td>
<td>36</td>
</tr>
<tr>
<td>4.2</td>
<td>Data pengujian densitas pasir silika</td>
<td>37</td>
</tr>
<tr>
<td>4.3</td>
<td>Hasil Perhitungan Densitas</td>
<td>38</td>
</tr>
<tr>
<td>4.4</td>
<td>Densitas Campuran Padatan Tiap Variasi</td>
<td>40</td>
</tr>
<tr>
<td>4.5</td>
<td>Pressure Drop pada Reaktor</td>
<td>43</td>
</tr>
<tr>
<td>4.6</td>
<td>Massa Padatan yang Melewati Downer dan Riser</td>
<td>45</td>
</tr>
<tr>
<td>4.7</td>
<td>Laju Sirkulasi Padat pada Downer dan Riser</td>
<td>48</td>
</tr>
</tbody>
</table>
BAB I
PENDAHULUAN

1.1. Latar Belakang

Energi merupakan kebutuhan utama baik untuk kehidupan masyarakat maupun industri. Krisis energi yang terjadi beberapa tahun terakhir ini merupakan salah satu masalah yang dihadapi saat ini. Akibat menipisnya cadangan bahan bakar minyak khususnya dari bahan bakar fosil yang tidak dapat diperbaharui. Konsumsi energi yang cukup tinggi ini yaitu hampir sekitar 95% dipenuhi dari bahan bakar fosil yang sebagian besar merupakan Bahan Bakar Minyak (BBM) yang memiliki cadangan sangat terbatas yaitu 3,7 miliar barel atau 0,3% dari cadangan dunia (Sukarna, 2012). Maka diperlukan pengembangan energi alternatif yang dapat menggantikan bahan bakar fosil. Energi alternatif yang cocok digunakan adalah energi biomassa karena jumlahnya yang berlimpah dan mudah diperbaharui.

Gasifikasi merupakan salah satu teknologi terbaik untuk mengkonversi bahan bakar padat menjadi bahan bakar gas mampu bakar (CO, CH₄, H₂). Salah satu teknologi gasifikasi telah berkembang pesat adalah sistem fluidized bed (FB).
Dimana pada teknologi ini terjadi pencampuran antara material hamparan dan bahan bakar. Keunggulan dari proses gasifikasi ini, yaitu: dapat digunakan biomassa nilai kalor yang relatif rendah dan kadar air yang cukup tinggi, kontak antara padatan dan gas bagus, efisiensi tinggi, dan emisi rendah. Efisiensi yang dapat dicapai dengan teknologi gasifikasi sekitar 30-40\%, lebih tinggi dari teknologi pembakaran biasa (Syamsiro, 2013).

Teknologi penggunaan energi biomassa dan sampah sebagai bahan bakar telah berkembang pesat salah satunya diterapkan pada sistem fluidized bed (FB). Bahan bakar biomassa yang berasal dari bahan organik terbarukan adalah salah satu sumber energi terbesar ketiga di dunia, setelah batubara dan minyak. Teknologi FB telah terbukti sebagai cara yang efektif untuk mengkonversi berbagai limbah menjadi energi bersih.

Dalam proses gasifikasi diperlukan sebuah reaktor, biasanya rektor yang telah digunakan selama ini memiliki kendala yaitu menyisakan bahan bakar yang tidak terbakar berupa arang atau char, sehingga salah satu teknologi fluidisasi yang sedang dikembangkan yang terdiri dari dual-reactor yaitu reaktor fluidized bed untuk proses gasifikasi dan reaktor pembakaran. Teknologi gasifikasi yang memisahkan proses reaksi endoterm dan eksoterm menjadi fokus pengembangan teknologi gasifikasi saat ini. Prinsip kerja dari reaktor ini ialah jika dalam proses gasifikasi atau pengkonversian bahan bakar menjadi gas terdapat sisa bahan bakar yang belum terkonversi, maka sisa bahan bakar tersebut akan disirkulasikan ke reaktor pembakaran dan kemudian kembali ke proses gasifikasi hingga bahan bakar habis terkonversi menjadi gas.

Pentingnya solid mixing pada sistem gasifikasi fluidized bed sangat berpengaruh dalam sirkulasi campuran bahan bakar dan bed material di dalam tipe dual reactor fluidized bed (DRFB). (Luong dkk, 1993) melakukan penelitian tentang studi laju sirkulasi padatan pada circulating fluidized bed. Hasil yang diperoleh dari penelitian ini menunjukkan bahwa, dengan meningkatkan ukuran partikel padatan, maka laju sirkulasi padatan menurun. (Shen dkk, 1998) meneliti pengaruh ukuran partikel pada pencampuran partikel dalam fluidized bed 2D. Mereka mengamati bahwa fluktuasi konsentrasi di kedua sumbu vertical dan horizontal meningkat sebagai akibat dari pertumbuhan partikel. (Gorji-Kandi dkk, 2014) meneliti bahwa peningkatan kecepatan
gas *superficial* akan meningkatkan laju pencampuran dan mengurangi waktu pencampuran, serta laju pencampuran menurun dengan meningkatkan ukuran partikel.

Pada DRFB fenomena sirkulasi partikel/material padat perlu diamati serta menjadi faktor penting terhadap proses pencampuran dan perpindahan masa yang terjadi pada sebuah sistem tertutup. Dalam penelitian ini model DRFB yang digunakan adalah *cold model* yaitu *dual reactor* yang tanpa terjadinya proses gasifikasi dan pembakaran, dimana reaktor dibuat dari akrilik yang bertujuan untuk mengamati fenomena aliran campuran material hamparan yaitu pasir silika dan bahan bakar yang terjadi di dalam *riser* pada *upper bed* yang disirkulasikan menggunakan *siklon* menuju *downer* sebelum masuk kembali ke *riser* melalui *loopseal*. Karakteristik laju jumlah massa *bed material* dan bahan bakar yang melewati *riser* dan *downer* akan dikaji dengan memvariasikan jumlah campuran *bed material* dan bahan bakar yang dimasukkan pada DRFB.

1.2. Rumusan Masalah

Berdasarkan pemaparan latar belakang di atas maka rumusan masalah dalam penelitian ini adalah bagaimana pengaruh penambahan material butiran biomass terhadap laju sirkulasi padat pada sistem *cold model dual reactor fluidized bed*.

1.3. Batasan Masalah

Dari latar belakang dan rumusan masalah diatas, maka penulis perlu kiranya membatasi masalah. Adapun batasan masalah dari penelitian ini adalah sebagai berikut:

1. Penelitian ini menggunakan reaktor *cold model*.
2. Biomassa yang digunakan adalah partikel biomassa pellet ikan dalam bentuk serbuk dengan ukuran antara 0,4 sampai 0,5 mm.
3. Bed material yang digunakan adalah pasir silika dengan ukuran antara 0,4 sampai 0,5 mm.
4. Udara yang dimasukan ke reaktor adalah udara lingkungan yang berasal dari kompresor dan blower dengan kecepatan konstan.
5. Penelitian ini memvariasikan komposisi campuran pasir silika dan pelet ikan yang dimasukkan pada DRFB.
1.4. **Tujuan Penelitian**

Adapun tujuan dari penelitian yang akan dilakukan adalah mengetahui pengaruh penambahan material butiran biomassa terhadap laju sirkulasi padat pada sistem cold model dual reactor fluidized bed.

1.5. **Manfaat Penelitian**

Adapun manfaat yang dapat diperoleh dari penelitian ini adalah:

1. Hasil penelitian ini diharapkan menjadi referensi desain dual reactor fluidized bed (DRFB), yang nantinya dapat memproduksi gas sebagai energi alternatif untuk mengurangi bahan bakar fosil. Selanjutnya, untuk produksi gas yang dihasilkan agar bisa menjadi acuan/referensi untuk dikembangkan ke skala industri/komersil yang lebih besar.

2. Mampu menciptakan alat pengkonversi energi untuk bahan bakar padat menjadi gas yang efisien dan ramah lingkungan.