ABSTRAK

Teknologi WLAN 802.11g merupakan salah satu teknologi wireless yang menggunakan modulasi OFDM dengan data rate hingga 54 Mbps, walaupun kini telah ada standar baru yang memiliki data rate lebih tinggi, namun standar WLAN 802.11 hingga saat ini masih tetap digunakan oleh para pengguna dan sebagian dari para pengguna tersebut sering memanfaatkan teknologi ini di dalam ruangan (indoor) salah satu contohnya adalah pada gedung Dishubkominfo Kabupaten Badung yang sangat memungkinkan untuk dilakukannya pertukaran informasi tersebut. Untuk itu perlu dilakukan analisis mengenai propagasi indoor WLAN IEEE 802.11g di gedung Dishubkominfo Kabupaten Badung.

Metode analisis yang digunakan adalah terdiri dari perhitungan dan pengukuran signal level, dan throughput yang akan dibandingkan dengan hasil pengukuran yang diukur dengan software pengukuran sesuai dengan kondisi model indoor propagasi yang digunakan yaitu tanpa penghalang, penghalang dinding, dan penghalang lantai. Sedangkan untuk coverage area diukur berdasarkan faktor koreksi antara hasil perhitungan dan hasil pengukuran signal level.

Berdasarkan hasil analisis yang telah dilakukan, menunjukkan bahwa hasil perhitungan dan pengukuran mengalami sedikit perbedaan yang menyebabkan terjadinya selisih di beberapa titik pengukuran. Signal level terbesar mencapai -40 dBm sedangkan untuk signal level terendah mencapai -92 dBm. Secara keseluruhan hampir di setiap kondisi hasil pengukuran signal level yang diperoleh mengikuti alur secara linier. Kemudian untuk hasil pengukuran throughput, diperoleh throughput maksimal hingga mencapai 8,05 Mbps, dari maksimal bandwidth yang telah tersedia yaitu 10 Mbps. Sedangkan untuk coverage area berdasarkan pengujian menggunakan software menyesuaikan denah pada gedung, hampir sesuai dengan hasil perhitungan signal level.

Kata Kunci : WLAN (wireless local area network), 802.11g, propagasi indoor, signal level, throughput, coverage area, tanpa penghalang, penghalang dinding, penghalang lantai.
ABSTRACT

WLAN 802.11g technology is one of the wireless technology that uses OFDM modulation with data rate up to 54 Mbps, although now there are new standards that have higher data rate, but the WLAN 802.11 standard is still used by the users and some of the These users often take advantage of this technology indoors (indoor) one example is the Dishubkominfo building of Badung regency which is very possible to do the exchange of information. For that we need an analysis of indoor propagation WLAN IEEE 802.11g in Dishubkominfo building Badung regency.

The analytical method used is comprised of calculation and measurement of signal level, and throughput which will be compared with the measurement result measured by the measurement software according to the condition of the indoor propagation model used ie without barrier, wall barrier, and floor barrier. As for the coverage area is measured by correction factor between the calculation results and the signal level measurement results.

Based on the results of the analysis that has been done, shows that the calculation and measurement results have little difference that causes the difference at some point measurement. The largest signal level reaches -40 dBm while the lowest signal level reaches -92 dBm. Overall in almost every condition the result of signal level measurement obtained following linear flow. Then for throughput measurement results, obtained throughput maximum up to reach 8.05 Mbps, from the maximum bandwidth that has been available that is 10 Mbps. As for the coverage area based on testing using software to adjust the floor plan on the building, almost in accordance with the calculation of signal level.

Keywords : WLAN (wireless local area network), 802.11g, indoor propagation, signal level, throughput, coverage area, without barrier, wall barrier, and floor barrier.
DAFTAR ISI

Halaman

SAMPU DALAM.. i
LEMBAR PERNYATAAN ORISINALITAS .. ii
PERSYARATAN GELAR .. iii
LEMBAR PENGESAHAN ... iv
UCAPAN TERIMAKASIH... v
ABSTRAK ... vii
ABSTRACT ... viii
DAFTAR ISI .. ix
DAFTAR GAMBAR .. xiv
DAFTAR TABEL .. xix
DAFTAR SINGKATAN .. xxii

BAB I PENDAHULUAN
 1.1 Latar Belakang ... 1
 1.2 Rumusan Masalah ... 2
 1.3 Tujuan .. 3
 1.4 Manfaat .. 3
 1.5 Ruang Lingkup dan Batasan Masalah ... 3
 1.6 Sistematika Penulisan .. 4

BAB II KAJIAN PUSTAKA
 2.1 Tinjauan Mutakhir .. 5
 2.2 Tinjauan Pustaka .. 7
 2.2.1 Deskripsi Pusat Pemerintahan Kabupaten Badung ... 7
 2.2.2 Wireless Local Area Network (WLAN) ... 10
 2.2.2.1 Arsitektur logika WLAN ... 10
 2.2.2.2 Arsitektur fisik WLAN .. 12
 2.2.2.3 Komponen WLAN ... 15
 2.2.3 Standarisasi Wireless Local Area Network ... 16
 2.2.4 WLAN IEEE 802.11g ... 18
2.2.4.1 Sistem modulasi IEEE 802.11g.................................21
2.2.5 Dasar mekanisme propagasi..25
 2.2.5.1 Refleksi...25
 2.2.5.2 Difraksi...26
 2.2.5.3 Scattering ..26
2.2.6 Propagasi gelombang radio ...27
 2.2.6.1 Propagasi outdoor ..27
 2.2.6.2 Propagasi indoor ...28
2.2.7 Receive Signal Level (RSL)...32
2.2.8 Throughput..32
2.2.9 Software pendukung..33
 2.2.8.1 Ekahau HeatMapper ...33
 2.2.8.2 Axence NetTools..34
 2.2.8.3 Wifi Analyzer..37
2.2.9 Hardware pendukung..37
 2.2.9.1 Wireless Ubuquiti Unifi ...37

BAB III METODE PENELITIAN
 3.1 Tempat dan Waktu Penelitian...39
 3.2 Data...39
 3.2.1 Sumber data penelitian..39
 3.2.2 Jenis data penelitian..39
 3.2.3 Metode pengumpulan data ...40
 3.3 Rancangan Penelitian..40
 3.3.1 Pengukuran signal level..40
 3.3.2 Pengukuran throughput...43
 3.3.3 Pengukuran coverage ..43
 3.4 Metode Analisis ...43
 3.5 Alur Penelitian...45

BAB IV PEMBAHASAN
 4.1 Umum ...50
 4.2 Lokasi Penelitian...51
4.2.1 Lantai 1 gedung Dishubkominfo ..52
4.2.2 Lantai 2 gedung Dishubkominfo ..52
4.2.3 Lantai 3 gedung Dishubkominfo ..53
4.3 Perhitungan Tanpa Penghalang ...54
 4.3.1 Perhitungan tanpa penghalang posisi access point 154
 4.3.2 Perhitungan tanpa penghalang posisi access point 259
4.4 Perhitungan Dengan Penghalang Dinding62
 4.4.1 Perhitungan penghalang dinding kondisi penghalang 1 dinding....63
 4.4.2 Perhitungan penghalang dinding kondisi penghalang 2 dinding....70
4.5 Perhitungan Dengan Penghalang Lantai76
 4.5.1 Perhitungan kondisi penghalang 1 lantai posisi AP di lantai atas ..76
 4.5.2 Perhitungan kondisi penghalang 1 lantai posisi AP di lantai bawah...79
 4.5.3 Perhitungan kondisi penghalang 2 lantai posisi AP di lantai atas ..82
 4.5.4 Perhitungan kondisi penghalang 2 lantai posisi AP di lantai bawah...86
4.6 Pengukuran Signal Level ...89
 4.6.1 Hasil pengukuran signal level tanpa penghalang posisi access point 1 ...93
 4.6.2 Hasil pengukuran signal level tanpa penghalang posisi access point 2 ...97
 4.6.3 Hasil pengukuran signal level penghalang 1 dinding..........101
 4.6.4 Hasil pengukuran signal level penghalang 2 dinding..........105
 4.6.5 Hasil pengukuran signal level penghalang 1 lantai posisi AP di lantai atas ...108
 4.6.6 Hasil pengukuran signal level penghalang 1 lantai posisi AP di lantai bawah...112
 4.6.7 Hasil pengukuran signal level penghalang 2 lantai posisi AP di lantai atas ...116
 4.6.8 Hasil pengukuran signal level penghalang 2 lantai posisi AP di lantai bawah...120
4.7 Pengukuran *Throughput* .. 124
 4.7.1 Hasil pengukuran *throughput* tanpa penghalang posisi AP 1 127
 4.7.2 Hasil pengukuran *throughput* tanpa penghalang posisi AP 2 129
 4.7.3 Hasil pengukuran *throughput* penghalang 1 dinding 131
 4.7.4 Hasil pengukuran *throughput* penghalang 2 dinding 133
 4.7.5 Hasil pengukuran *throughput* penghalang 1 lantai posisi AP
di lantai atas .. 135
 4.7.6 Hasil pengukuran *throughput* penghalang 1 lantai posisi AP
di lantai bawah .. 137
 4.7.7 Hasil pengukuran *throughput* penghalang 2 lantai posisi AP
di lantai atas .. 139
 4.7.8 Hasil pengukuran *throughput* penghalang 2 lantai posisi AP
di lantai bawah .. 141
4.8 Hubungan Antara Pengukuran *Signal Level* dan *Throughput* 143
 4.8.1 Hubungan antara *signal level* dan *throughput* tanpa penghalang
posisi access point 1 ... 144
 4.8.2 Hubungan antara *signal level* dan *throughput* tanpa penghalang
posisi access point 2 ... 146
 4.8.3 Hubungan antara *signal level* dan *throughput* penghalang
1 dinding ... 148
 4.8.4 Hubungan antara *signal level* dan *throughput* penghalang
2 dinding ... 151
 4.8.5 Hubungan antara *signal level* dan *throughput* penghalang 1 lantai
posisi AP di lantai atas ... 152
 4.8.6 Hubungan antara *signal level* dan *throughput* penghalang 1 lantai
posisi AP di lantai bawah .. 155
 4.8.7 Hubungan antara *signal level* dan *throughput* penghalang 2 lantai
posisi AP di lantai atas ... 157
 4.8.8 Hubungan antara *signal level* dan *throughput* penghalang 2 lantai
posisi AP di lantai bawah .. 160
4.9 Pengukuran *Coverage* WLAN 802.11g .. 162
4.9.1 Pengukuran coverage pada lantai 1 ... 163
4.9.2 Pengukuran coverage pada lantai 2 ... 164
4.9.3 Pengukuran coverage pada lantai 3 ... 165

BAB V PENUTUP

5.1 Simpulan ... 166
5.2 Saran .. 167

DAFTAR PUSTAKA

LAMPIRAN
DAFTAR GAMBAR

<table>
<thead>
<tr>
<th>Gambar</th>
<th>Gambar</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Wilayah Kabupaten Badung</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Perspektif Kawasan Puspen Badung, dengan konsep sistem pelayanan dalam satu kawasan</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>Arsitektur WLAN</td>
<td>11</td>
</tr>
<tr>
<td>2.4</td>
<td>Konfigurasi Jaringan Basic Service Set</td>
<td>13</td>
</tr>
<tr>
<td>2.5</td>
<td>Konfigurasi Jaringan ESS dengan menggunakan wireless</td>
<td>14</td>
</tr>
<tr>
<td>2.6</td>
<td>Konfigurasi Jaringan Independent Basic Service Set</td>
<td>15</td>
</tr>
<tr>
<td>2.7</td>
<td>Access Point Unifi</td>
<td>15</td>
</tr>
<tr>
<td>2.8</td>
<td>Wireless LAN Interface Atheros AR9285 untuk mobile PC</td>
<td>16</td>
</tr>
<tr>
<td>2.9</td>
<td>Kanal 802.11g untuk frekuensi 2,4 GHz</td>
<td>21</td>
</tr>
<tr>
<td>2.10</td>
<td>Sistem transmisi data OFDM</td>
<td>22</td>
</tr>
<tr>
<td>2.11</td>
<td>Konstelasi Binary Phase Shift Keying</td>
<td>23</td>
</tr>
<tr>
<td>2.12</td>
<td>Konstelasi Quadrature Phase Shift Keying</td>
<td>24</td>
</tr>
<tr>
<td>2.13</td>
<td>Konstelasi 16-Quadrature Amplitude Modulation</td>
<td>24</td>
</tr>
<tr>
<td>2.14</td>
<td>Konstelasi 64-Quadrature Amplitude Modulation</td>
<td>25</td>
</tr>
<tr>
<td>2.15</td>
<td>Refleksi pada permukaan dinding</td>
<td>26</td>
</tr>
<tr>
<td>2.16</td>
<td>Difraksi pada dinding</td>
<td>26</td>
</tr>
<tr>
<td>2.17</td>
<td>Scattering</td>
<td>27</td>
</tr>
<tr>
<td>2.18</td>
<td>Hasil percobaan menggunakan Software Ekahau Heatmapper</td>
<td>34</td>
</tr>
<tr>
<td>2.20</td>
<td>NetWatch untuk memonitor host</td>
<td>35</td>
</tr>
<tr>
<td>2.21</td>
<td>Jaringan dan bandwidth</td>
<td>36</td>
</tr>
<tr>
<td>2.22</td>
<td>Ketersediaan dari host</td>
<td>36</td>
</tr>
<tr>
<td>2.23</td>
<td>Wifi Analyzer</td>
<td>37</td>
</tr>
<tr>
<td>3.1</td>
<td>Contoh pengukuran signal level dengan kondisi tanpa penghalang</td>
<td>41</td>
</tr>
<tr>
<td>3.2</td>
<td>Contoh pengukuran signal level dengan kondisi penghalang dinding</td>
<td>41</td>
</tr>
<tr>
<td>3.3</td>
<td>Contoh pengukuran signal level dengan kondisi penghalang lantai AP di lantai atas (a) dan kondisi penghalang lantai AP di lantai</td>
<td></td>
</tr>
</tbody>
</table>
bawah (b)...42
Gambar 3.4 Alur penelitian umum...45
Gambar 3.5 Alur pengukuran signal level..46
Gambar 3.6 Alur pengukuran throughput...47
Gambar 3.7 Alur pengukuran coverage..48
Gambar 3.8 Alur output penelitian...49
Gambar 4.1 Gedung Dinas Perhubungan Komunikasi dan Informatika
Kabupaten Badung ..51
Gambar 4.2 Gambar denah kondisi lantai 1 gedung Dishubkominfo.........52
Gambar 4.3 Gambar denah kondisi lantai 2 gedung Dishubkominfo.........53
Gambar 4.4 Gambar denah kondisi lantai 3 gedung Dishubkominfo.........53
Gambar 4.5 Denah titik perhitungan tanpa penghalang posisi access point 1...54
Gambar 4.6 Access point terpasang pada plafon...54
Gambar 4.7 Ilustrasi jarak pengukuran terjauh dengan persamaan
phytagoras ...55
Gambar 4.8 Grafik perhitungan kondisi tanpa penghalang posisi
access point 1 ..59
Gambar 4.9 Denah titik perhitungan tanpa penghalang posisi access point 2...60
Gambar 4.10 Grafik perhitungan kondisi tanpa penghalang posisi access point 362
Gambar 4.11 Denah kondisi penghalang 1 dinding posisi AP 1 lantai 1.........63
Gambar 4.12 Denah kondisi penghalang 1 dinding posisi AP 2 lantai 1.........64
Gambar 4.13 Denah kondisi penghalang 1 dinding posisi AP 1 lantai 2.........64
Gambar 4.14 Denah kondisi penghalang 1 dinding posisi AP 2 lantai 2........65
Gambar 4.15 Denah kondisi penghalang 1 dinding posisi AP 1 lantai 3.........66
Gambar 4.16 Denah kondisi penghalang 1 dinding posisi AP 2 lantai 3.........67
Gambar 4.17 Grafik perhitungan penghalang 1 dinding posisi access point 1.....70
Gambar 4.18 Denah kondisi penghalang 2 dinding posisi AP 1 lantai 1.........71
Gambar 4.19 Denah kondisi penghalang 2 dinding posisi AP 2 lantai 1.........71
Gambar 4.20 Denah kondisi penghalang 2 dinding posisi lantai 2............72
Gambar 4.21 Denah kondisi penghalang 2 dinding posisi lantai 3.............73
Gambar 4.22 Grafik perhitungan penghalang 2 dinding posisi access point 1.....75
Gambar 4.23 Ilustrasi kondisi penghalang 1 lantai, *access point* berada di lantai atas ...76
Gambar 4.24 Grafik perhitungan penghalang 1 lantai posisi *access point* di lantai atas ...79
Gambar 4.25 Ilustrasi kondisi penghalang 1 lantai, *access point* berada di lantai bawah ...80
Gambar 4.26 Grafik perhitungan penghalang 1 lantai posisi *access point* di lantai bawah ...82
Gambar 4.27 Ilustrasi kondisi penghalang 2 lantai posisi AP di lantai atas83
Gambar 4.28 Grafik perhitungan penghalang 2 lantai posisi *access point* di lantai atas ...86
Gambar 4.29 Ilustrasi kondisi penghalang 2 lantai posisi AP di lantai bawah87
Gambar 4.30 Grafik perhitungan penghalang 2 lantai posisi *access point* di lantai bawah ...89
Gambar 4.31 IP *address* DHCP pada laptop *server* ...90
Gambar 4.32 Tampilan aplikasi *UniFi Controller* ...90
Gambar 4.33 Tampilan settingan *access point* Ubiquiti *Unifi* UAP91
Gambar 4.34 Tampilan settingan WLAN *Group Wireless Networks*91
Gambar 4.35 Tampilan settingan *Tx Rate* ...92
Gambar 4.36 Tampilan *access point* Unifi UAP aktif ...92
Gambar 4.37 Tampilan *software Wifi Analyzer* ...93
Gambar 4.38 Grafik pengukuran *signal level* kondisi tanpa penghalang posisi *access point* 1 ...95
Gambar 4.39 Grafik perbandingan perhitungan dan pengukuran tanpa penghalang posisi AP 1 ...97
Gambar 4.40 Grafik pengukuran kondisi tanpa penghalang posisi *access point* 2 ...99
Gambar 4.41 Grafik perbandingan perhitungan dan pengukuran tanpa penghalang posisi AP 2 ...101
Gambar 4.42 Grafik pengukuran kondisi penghalang 1 dinding ..103
Gambar 4.43 Grafik perbandingan perhitungan dan pengukuran kondisi
penghalang 1 dinding ... 105
Gambar 4.44 Grafik pengukuran kondisi penghalang 2 dinding 106
Gambar 4.45 Grafik perbandingan perhitungan dan pengukuran kondisi
penghalang 2 dinding ... 107
Gambar 4.46 Grafik pengukuran kondisi penghalang 1 lantai posisi AP di
lantai atas .. 110
Gambar 4.47 Grafik perbandingan perhitungan dan pengukuran kondisi
penghalang 1 lantai posisi AP di lantai atas 112
Gambar 4.48 Grafik pengukuran kondisi penghalang 1 lantai posisi AP di
lantai bawah .. 114
Gambar 4.49 Grafik perbandingan perhitungan dan pengukuran kondisi
penghalang 1 lantai posisi AP di lantai bawah 116
Gambar 4.50 Grafik pengukuran kondisi penghalang 2 lantai posisi AP di
lantai atas .. 118
Gambar 4.51 Grafik perbandingan perhitungan dan pengukuran kondisi
penghalang 2 lantai posisi AP di lantai atas 120
Gambar 4.52 Grafik pengukuran kondisi penghalang 2 lantai posisi AP di
lantai bawah .. 122
Gambar 4.53 Grafik perbandingan perhitungan dan pengukuran kondisi
penghalang 2 lantai posisi AP di lantai bawah 124
Gambar 4.54 Ilustrasi pengukuran throughput 125
Gambar 4.55 Setting WLAN Group AP .. 126
Gambar 4.56 Tampilan software Axence netTools 5 126
Gambar 4.57 Grafik throughput kondisi tanpa penghalang posisi access
point 1 ... 129
Gambar 4.58 Grafik throughput kondisi tanpa penghalang posisi access
point 2 ... 131
Gambar 4.59 Grafik throughput kondisi penghalang 1 dinding 133
Gambar 4.60 Grafik throughput kondisi penghalang 2 dinding 134
Gambar 4.60 Grafik throughput kondisi penghalang 1 lantai posisi AP di
lantai atas .. 137
Gambar 4.61 Grafik throughput kondisi penghalang 1 lantai posisi AP di lantai bawah ..139
Gambar 4.62 Grafik throughput kondisi penghalang 2 lantai posisi AP di lantai atas ..141
Gambar 4.63 Grafik throughput kondisi penghalang 2 lantai posisi AP di lantai bawah ..143
Gambar 4.64 Hubungan pengukuran signal level dan throughput kondisi tanpa penghalang posisi AP 1 ..145
Gambar 4.65 Hubungan pengukuran signal level dan throughput kondisi tanpa penghalang posisi AP 2 ..147
Gambar 4.66 Hubungan pengukuran signal level dan throughput kondisi penghalang 1 dinding ..150
Gambar 4.67 Hubungan pengukuran signal level dan throughput kondisi penghalang 2 dinding ..152
Gambar 4.68 Hubungan pengukuran signal level dan throughput kondisi penghalang 1 lantai posisi AP di lantai atas ...154
Gambar 4.69 Hubungan pengukuran signal level dan throughput kondisi penghalang 1 lantai posisi AP di lantai bawah ...156
Gambar 4.70 Hubungan pengukuran signal level dan throughput kondisi penghalang 2 lantai posisi AP di lantai atas ...159
Gambar 4.71 Hubungan pengukuran signal level dan throughput kondisi penghalang 2 lantai posisi AP di lantai bawah ...161
Gambar 4.72 Pengukuran coverage pada lantai 1 gedung Dishubkominfo Badung ...163
Gambar 4.73 Pengukuran coverage pada lantai 2 gedung Dishubkominfo Badung ...164
Gambar 4.74 Pengukuran coverage pada lantai 3 gedung Dishubkominfo Badung ...165
DAFTAR TABEL

Tabel 2.1	Spesifikasi Standar IEEE 802.11	17
Tabel 2.2	Sensitivitas Kecepatan Standar 802.11g	18
Tabel 2.3	Physical characteristic IEEE 802.11g	19
Tabel 2.4	Pembagian channel untuk frekuensi 2,4 GHz	21
Tabel 2.5	Data rate, modulasi, dan coding rate WLAN 802.11g	22
Tabel 2.6	Nilai Parameter	30
Tabel 2.7	Nilai shadowing berdasarkan urutan titik jarak pengukuran	31
Tabel 2.8	Spesifikasi Wireless Ubiquiti Unifi	38
Tabel 4.1	Parameter one slope model	56
Tabel 4.2	Perhitungan kondisi tanpa penghalang posisi access point 1	58
Tabel 4.3	Perhitungan kondisi tanpa penghalang posisi access point 2	60
Tabel 4.4	Perhitungan kondisi penghalang 1 dinding posisi AP 1	69
Tabel 4.5	Perhitungan kondisi penghalang 2 dinding posisi AP 1	74
Tabel 4.6	Perhitungan kondisi penghalang 1 lantai posisi AP di lantai atas	78
Tabel 4.7	Perhitungan kondisi penghalang 1 lantai posisi AP di lantai bawah	81
Tabel 4.8	Perhitungan kondisi penghalang 2 lantai posisi AP di lantai atas	85
Tabel 4.9	Perhitungan kondisi penghalang 2 lantai posisi AP di lantai bawah	88
Tabel 4.10	Pengukuran signal level kondisi tanpa penghalang posisi access point 1	94
Tabel 4.11	Perbandingan perhitungan dan pengukuran kondisi tanpa penghalang posisi AP 1	96
Tabel 4.12	Pengukuran kondisi tanpa penghalang posisi access point 2	98
Tabel 4.13	Perbandingan perhitungan dan pengukuran kondisi tanpa penghalang posisi AP 2	100
Tabel 4.14	Hasil pengukuran kondisi penghalang 1 dinding	102
Tabel 4.15	Perbandingan perhitungan dan pengukuran kondisi penghalang 1 dinding	104
Tabel 4.16	Hasil pengukuran kondisi penghalang 2 dinding	106
Tabel 4.17	Perbandingan perhitungan dan pengukuran kondisi penghalang	
2 dinding...107

Tabel 4.18 Hasil pengukuran kondisi penghalang 1 lantai posisi AP di
lantai atas..109

Tabel 4.19 Perbandingan perhitungan dan pengukuran kondisi penghalang 1
lantai posisi AP di lantai atas111

Tabel 4.20 Hasil pengukuran kondisi penghalang 1 lantai posisi AP di
lantai bawah..113

Tabel 4.21 Perbandingan perhitungan dan pengukuran kondisi penghalang 1
lantai posisi AP di lantai bawah115

Tabel 4.22 Hasil pengukuran kondisi penghalang 2 lantai posisi AP di
lantai atas..117

Tabel 4.23 Perbandingan perhitungan dan pengukuran kondisi penghalang 2
lantai posisi AP di lantai atas119

Tabel 4.24 Hasil pengukuran kondisi penghalang 2 lantai posisi AP di
lantai bawah..121

Tabel 4.25 Perbandingan perhitungan dan pengukuran kondisi penghalang 2
lantai posisi AP di lantai bawah122

Tabel 4.26 Hasil pengukuran throughput kondisi tanpa penghalang posisi
access point 1 ...128

Tabel 4.27 Hasil pengukuran throughput kondisi tanpa penghalang posisi
access point 2 ...130

Tabel 4.28 Hasil pengukuran throughput kondisi penghalang 1 dinding132

Tabel 4.29 Hasil pengukuran throughput kondisi penghalang 2 dinding133

Tabel 4.30 Hasil pengukuran throughput kondisi penghalang 1 lantai posisi
AP di lantai atas...136

Tabel 4.31 Hasil pengukuran throughput kondisi penghalang 1 lantai posisi
AP di lantai bawah ..138

Tabel 4.32 Hasil pengukuran throughput kondisi penghalang 2 lantai posisi
AP di lantai atas...140

Tabel 4.33 Hasil pengukuran throughput kondisi penghalang 2 lantai posisi
AP di lantai bawah ..142
Tabel 4.3 Hubungan signal level dan throughput kondisi tanpa penghalang
posisi AP 1..144
Tabel 4.35 Hubungan signal level dan throughput kondisi tanpa penghalang
posisi AP 2..146
Tabel 4.36 Hubungan signal level dan throughput kondisi penghalang
1 dinding..149
Tabel 4.37 Hubungan signal level dan throughput kondisi penghalang
2 dinding..151
Tabel 4.38 Hubungan signal level dan throughput kondisi penghalang
1 lantai posisi AP di lantai atas ...153
Tabel 4.39 Hubungan signal level dan throughput kondisi penghalang
1 lantai posisi AP di lantai bawah ..155
Tabel 4.40 Hubungan signal level dan throughput kondisi penghalang
2 lantai posisi AP di lantai atas ...158
Tabel 4.41 Hubungan signal level dan throughput kondisi penghalang
2 lantai posisi AP di lantai bawah ..160
Tabel 4.42 Kuat sinyal coverage area wireless pada software
ekahau heatmapper ...162
DAFTAR SINGKATAN

<table>
<thead>
<tr>
<th>Singkatan</th>
<th>Penerjemahan</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP</td>
<td>Access Point</td>
</tr>
<tr>
<td>BSS</td>
<td>Basic Service Set</td>
</tr>
<tr>
<td>BPSK</td>
<td>Binary Phase Shift Keying</td>
</tr>
<tr>
<td>CCK</td>
<td>Complimentary Code Keying</td>
</tr>
<tr>
<td>DHSS</td>
<td>Direct sequence spread spectrum</td>
</tr>
<tr>
<td>EIRP</td>
<td>Effective Isotropic Radiated Power</td>
</tr>
<tr>
<td>ESS</td>
<td>Extended Service Set</td>
</tr>
<tr>
<td>FHSS</td>
<td>Frequency hopping spread spectrum</td>
</tr>
<tr>
<td>GUI</td>
<td>Graphic User Interface</td>
</tr>
<tr>
<td>IBSS</td>
<td>Independent Basic Service Set</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronics Engineers</td>
</tr>
<tr>
<td>IrDA</td>
<td>Infrared data association</td>
</tr>
<tr>
<td>IDFT</td>
<td>Inverse Discrete Fourier Transform</td>
</tr>
<tr>
<td>LLC</td>
<td>Logical link layer</td>
</tr>
<tr>
<td>LOS</td>
<td>Line of Sight</td>
</tr>
<tr>
<td>MAC</td>
<td>Medium access control layer</td>
</tr>
<tr>
<td>NIC</td>
<td>Network interface card</td>
</tr>
<tr>
<td>OSI</td>
<td>Open System Interconnection</td>
</tr>
<tr>
<td>OFDM</td>
<td>Orthogonal Frequency Division Multiplexing</td>
</tr>
<tr>
<td>PBCC</td>
<td>Paket Binary Convolutional Coding</td>
</tr>
<tr>
<td>PCMCIA</td>
<td>Personal Computer Memory Card International Association</td>
</tr>
<tr>
<td>PCI</td>
<td>Peripheral Component Interconnect</td>
</tr>
<tr>
<td>PSK</td>
<td>Phase Shift Keying</td>
</tr>
</tbody>
</table>
QOS : *Quality of Service*
QPSK : *Quadrature Phase Shift Keying*
QAM : *Quadrature Amplitude Modulation*
RF : *Radio Frequency*
RSL : *Receive Signal Level*
SSID : *Service Set Identifier*
USB : *Universal Serial Bus*
WLAN : *Wireless Local Area Network*
WIFI : *Wireless-Fidelity*
WEP : *Wired Equivalent Privacy*
WPA : *Wi-Fi Protected Access*
BAB I
PENDAHULUAN

1.1 Latar Belakang

Dalam prakteknya, *access point* tidak selalu dapat mencakup jarak jangkauan yang maksimal. Itu dikarenakan dalam prosesnya, sinyal dari *access point* akan mengalami propagasi yang mengakibatkan sinyal mengalami penurunan atau pelemahan level sinyal. Berbagai macam faktor dapat memengaruhi perambatan gelombang sinyal dalam ruangan, seperti pemantulan, pembelokkan, maupun penghamburan sinyal.
Pada Pusat Pemerintahan Kabupaten Badung, khususnya gedung Dinas
Perhubungan, Komunikasi, dan Informatika (Dishubkominfo) sudah
diterapkannya jaringan WLAN. Penerapan access point sebatas pada lingkungan
indoor yang tersebar 2 access point pada setiap lantai dan hanya dipasang pada
lorong-lorong gedung dengan kondisi konstruksi bangunan yang terdiri dari
banyak ruangan serta bahan material tembok beton menimbulkan banyaknya
redaman. Sehingga pada keadaan tersebut sering terjadinya gagal koneksi antara
access point dengan user. Maka berdasarkan permasalahan itu penulis
memberikan sebuah ide untuk melakukan pengkajian dan analisa terhadap
kualitas sinyal pada propagasi indoor sehingga dapat dijadikan pertimbangan
dalam menentukan dan mendesain suatu jaringan WLAN.

1.2 Rumusan Masalah

Dari latar belakang diatas, maka dapat dirumuskan permasalahan sebagai
berikut:

1. Bagaimana Signal Level WLAN 802.11g, jika dilihat dari nilai perhitungan
teori dan dari nilai pengukuran pada lingkungan indoor gedung Dishubkominfo
Kabupaten Badung?
2. Bagaimana besar nilai throughput dari WLAN 802.11g, jika dihubungkan
berdasarkan jarak dari access point pada lingkungan indoor gedung
Dishubkominfo Kabupaten Badung?
3. Bagaimana pengaruh throughput pada masing-masing kondisi pengukuran
terhadap kuat sinyal yang diperoleh dari pengukuran signal level?
4. Bagaimana dan Apakah coverage area Wi-Fi di gedung Dishubkominfo
Kabupaten Badung sudah mencakup luas total setiap lantai?
1.3 **Tujuan**

Tujuan dari penelitian ini adalah sebagai berikut:

1. Memahami hal-hal apa saja yang dapat memengaruhi kuat sinyal wireless khususnya pada model propagasi indoor.
2. Untuk mengetahui perbandingan antara hasil pengukuran dengan hasil perhitungan teoritis menggunakan model propagasi indoor.
3. Untuk mengetahui kuat sinyal wireless jika ditinjau dari parameter throughput pada kondisi indoor.

1.4 **Manfaat**

Adapun manfaat yang diperoleh dari hasil penelitian ini antara lain:

1. Diharapkan penelitian ini nantinya akan menghasilkan suatu data yang kongkrit mengenai kinerja optimalisasi jaringan wireless.
2. Sebagai bahan pertimbangan untuk mendapatkan kualitas sinyal yang baik dalam mendesain suatu jaringan WLAN pada lingkungan indoor.

1.5 **Ruang Lingkup**

Adapun ruang lingkup dari penelitian ini yaitu, sebagai berikut:

1. Penelitian hanya dilakukan pada satu gedung di Pusat Pemerintahan Kabupaten Badung yaitu Kantor Dinas Perhubungan, Komunikasi, dan Informatika (Dishubkominfo).
2. Penelitian ini menggunakan model Wireless Ubiquity UniFi dengan standar protokol IEEE 802.11g.
3. Penggunaan rumus-rumus perhitungan untuk menunjang nilai redaman penghalang.
5. Analisis signal level menggunakan 5 model pengukuran, yaitu penghalang tanpa dinding, penghalang dengan 1 dinding, penghalang dengan 2 dinding, penghalang 1 lantai, dan penghalang 2 lantai.
6. Analisis throughput dilihat berdasarkan jarak titik dari hasil pengukuran menggunakan software Axence Nettools.

7. Access point dikonfigurasi menggunakan kecepatan bit rate yang maksimum dari WLAN 802.11g, yaitu 54 Mbps.

8. Pada pengukuran hanya menggunakan 1 user.

1.6 Sistematika Penulisan

Sistematika penyusunan laporan Tugas Akhir ini sebagai berikut:

- **BAB I** : PENDAHULUAN
Membahas secara singkat mengenai latar belakang permasalahan, rumusan masalah, tujuan penelitian, manfaat penelitian, batasan masalah, dan sistematika penulisan.

- **BAB II** : TINJAUAN PUSTAKA
Pada bab ini menjelaskan tentang teori – tori yang mendukung permasalahan yang akan dibahas, seperti WLAN, propagasi indoor, dan software serta hardware yang akan digunakan dalam penelitian.

- **BAB III** : METODE PENELITIAN
Dalam bab ini menjelaskan mengenai tempat dan waktu penelitian, jenis dan sumber data, teknik pengumpulan data, alur serta metode analisis data.

- **BAB IV** : PEMBAHASAN
Pada bab ini berisikan tentang hasil perhitungan dan pengukuran signal level, throughput dalam berbagai kondisi, serta hasil analisis dan pembahasan hubungan signal level dengan throughput, dan coverage.

- **BAB V** : PENUTUP
Bab ini berisi simpulan dari penulis tentang analisis yang telah dilakukan dan saran unutk keperluan penelitian selanjutnya.